Here's February! - .
CLOaD
MAGAZINE, inc

BOX 1287
GOLETA, Cca
3017

_FEBRUARY 1980 _J

This issue is a bit of a special one for
us - it is our 24th issue, which rounds out
our second year. We here at CLOAD hope that
all our faithful subscribers have had many
happy loads these past years. Here's what
we've got lined up for February:

‘k'k‘.’\“k‘k*if**'}:*******:’:*)‘(*'}r'k‘k*7‘:‘.’:7’:7‘:7‘:*:‘:*7\"];*7':7'c7'r‘ka‘\“,\“kv‘c'}:'k'}:v'\“k“k‘r':ici‘:\'**u&-‘k*******‘k***%':3.'7':**9:

% x
* Level Title Turns Count *
* CTR-41 CTR-80 *
* *
* ITITITIITIII Zap/Zonk (cover) 17 & 263 10 & 155 *
* II Kalah Instructions 59 & 294 35 & 173 *
* 11 Kalah 117 & 338 69 & 198 *
* IT Dissertation 171 & 379 100 & 224 *
* ITITIIITIIT Coefficients 216 & 416 126 & 245 :
*

* *
* ITITIIIIIII Zap/Zonk (cover) 10 & 36 6 & 21 *
* IT 11 Election 61 & 177 37 & 104 *
* I1 TII Kalah 278 & 319 164 & 188 *
* IT II Monitor 359 & 383 211 & 226 *
* ITITITIIIIX Dissertation 406 & 427 238 & 251 *
A %

****k*****:’c**;’c-}r*fc*v‘:-}f*;‘:7‘:***7‘:**:’:*****7‘:*:‘::&:&7’:***‘k*:’c*'k‘kv\':’:***v\":’c*;\“}:******:’c*w‘\‘***z’:****

centuries ~ o0ld game that

with a wide variety of

virg), with beans in a
board), with plastic

A lot of you will recognize "Kalah". It is
originated somewhere in Africa. It can be play
equipment: with seashells in the sand (cosgt - v
carved wooden board (cost - the effort of carvineg

134

tokens in an injection molded plastic tray (cost - 56.98 plus taxw), or with
bits in a computer (cost - $500 up). Which egulpmnent you use all depends on

your particular society's level of technology.

That's really not fair. When you play it with bits in a computer, you
don't need a human opponent. The computer will always be willing to play,
and you can thus match your skills against the kind of machine which will
probably replace you in a few years. Good luck!

"Dissertation” is a program of the highest versatility and practicality.
As we move further and further into a report-based society, it is becoming
imperative that we utiiize the newer levels of techrnology to aid us (this, of
course, is nothing new - human society has long been noted for its ability to
build machines to take over the drudge work). This program has been
optimized to generate a dissertation, but it is certainly not limited to this
task., With slight modifications, it can generate contract proposals,
political speeches, medical and legal briefs and so on. As the use and
understanding of computers increases in the years ahead, more and more
communications will be handled with & direct link from computer to computer.
At that time, a computer will be used to read the incoming messages.
Humanity will then have successfully set up a society of computers that
enerate, disseminate, and digest data in much the same way and with much the
same results as the current human/paper/human system. Then the humans can
hand over the keys to the executive washroom and start all over again.

2

There are party poopers who feel that this is absurd. I can only reply
that CLOAD magazine has a program much like this one that we have been using
for years to generate text for these "yellow pages".

"Coefficiens" is a math problem solver. In the field of mathematics,
there is a type of problem where you are given a set of "n" equations

(hopefully nice, neat types) each having "n" unknown terms. A simple example
would be:

3 + 5Y = 11 and 5 + 7Y = 17

Here we have two separate equations and two unknowns (X & ¥Y) in each. It
turns out that (1) if there are as many equations as there are unknowns and
(2) if no equation is a direct multiple of another, then there is a unique
solution to the problem. A solution is considered to be a list of the values
for all the unknowns (in this example, X=2 and ¥Y=1l).

"Election" is a rather current topic, this being a year with an upcoming
U.S. Presidential election. With this game you can simulate the results
that would accompany your entry into the race. Your opponents are those who
looked good at the time this program was written. Thus in the Democratic
Party's semifinals Senator Kennedy is given a strong position over President
Carter, and the main Republican contender is Ronald Reagan. Who can tell, by

the time you run this program, Samuel Wilburforce might have captured both
nominations.

When I ran this one, my campaign philosophy (and its results) were what
prompted this statement by then-Senator John F. Kennedy:

"One Senator, since retired, said that he voted with the special
interests on every issue, hoping that by election time all of them added
together would constitute nearly a majority that would remember him
favorably, while the other members of the public would never know about -
much less remember - his vote against their welfare. It is reassuring to
know that this seemingly unbeatable formula did not work in his case.”

Perhaps your technique will be more successful. If so, you might
consider a career in public life, armed with the "Dissertation” program
modified to generate speeches.

"Monitor" is a program similar to the Radio Shack T-BUG monitor. It is
written in BASIC, so you can see what is actually being done. Your
capabilities with this program include converting between base ten and base
sixteen (hexadecimal, or hex for short), altering memory, examining memory
either as hex numbers or ASCII characters, loading and saving on cassette
tape, executing any system code you may have written (through the SYSTEM
command), and the usual return to BASIC. If you accidently return to BASIC,
all is not lost and suicide need not be contemplated. Simply RUNning the
program will set you back up.

Since I know that at least all you level Iler's have a mconitor now, I'd
like to talk a bit on the subject of machine language subroutines. Of
necessity, the language will be laced with jive machine talk. My apologies
to those who would prefer English.

Machine language has a "GOSUB" command which acts exactly like its BASIcC
counterpart. The assembler mnemonic is CALL and the instruction byte (which
is what the computer sees) is CD in hex notation. We'll be using hex for the
rest of the article. When the computer is tripping merrily along executing a
machine language program, and arrives at a CD in memory, it goes into a

3
little dance to call a machine language subroutine. Here's a step by step .

description of what happens:

(1) The %Z-80 (computer CPU chip) reads the CD we've talked about and puts
into its internal "command" buffer.

(2) After pondering a microsecond or so, the Z-80 decides that it should
do its "call a subroutine" act.

(3) The first step of this act is to grab the next two bytes of memory
and use it as the address of the subroutine to call.

(4) After it has the address to find the subroutine, it has to write
itself a note telling it where to come back. Since it wants to come back to
the point just after the CALL sequence, it puts the address which immediately
follows the CALL sequence on a little piece of paper and puts it on top of a
stack of little pieces of paper that it has written itself in the past. This
stack, incidentally, is referred to in computer jargon as "the stack".

(5) Thus having arranged its affairs for the return trip, it takes a deep
breath and JMPs to the subroutine. The Z-80 can leap from any part of memory
to any other part in a single bound. This is called "non-partitioned
memory", a high gloss phrase that you can use to impress your friends.

(6) The Z-80 proceeds to execute the subroutine. There is no restriction
on how many "nested" subroutines can exist. This means that a subroutine is
free to call another subroutine, which in turn is free to call yet a third,
and so on ad nauseum. Some (strange) programmers write subroutines that call
themselves as subsubroutines hundreds of times. There is a sorting algorithm

lled a "quicksort" that makes heavy use of this ability.

(7) The subroutine (let's keep it simple at one level) is finished when
the 7-80 encounters a return instruction. The usual one used is the simple
RET, which has an instruction byte of C9. When the 7-80 encounters a C9, it
picks up the piece of paper it left on the stack and reads the address
written on it. If everything went well, the piece of paper is the one it
left there before and the return address is the correct one.

(8) The %-80 places the piece of paper on the scrap heap and JMPs back to
the place it started from.

Let's look at an example - assume that a section of memory is set up as
follows:

Main routine Subroutine
Address Data Address Data
5000 00 6034 3C
5001 00 6035 3C
5002 00 6036 05
5003 CD 6037 C9
5004 34 6033 2F
5005 60 60349 07
5006 37

Assume that the Z-80 is executing the instruction at address 5000 when we
first look in. The 7-80 fetches the byte out of RAM at that address and
executes it (that is, it "does"™ it, not electrocute it). The hex command
(called an operation code, or opccde) is a 00. Thisg is the infamous NOP, or

4

no operation. It does absolutely nothing (though it is often handy). After
doing nothing for about 2.25 microseconds, the Z-80 goes out and fetches the
next byte, at address 5001 (sounds like a movie, doesn't it?). Same story,
though. Eventually we get to the point where the Z-80 fetches the byte at
5003. It is a CD, or CALL opcode (step 1 above).

The Z%Z-80 now knows that a subroutine call is coming up (step 2), but it
does not know where. It does know, however, that the programmer was told to
put the address in the next two bytes (in the usual insane reverse order).
Fetching these (step 3) and re-reversing them to rational order takes the
7Z-80 to address 5006. It does not fetch the opcode at 5006 yet. Instead, it
writes the bytes 06 and 50 (reverse order, of course - don't ask why, only
the Z-80 designers know) into a particular area of memory (the stack). It
now jumps to the byte at address 6034 (step 5).

We now resume a more normal mode of operation (at step 6). The Z-80
fetches the byte at address 6034. It is a 3C, which is slightly more
interesting than the 00 opcode. It is the INC A instruction. It takes
whatever is in the "accumulator" register and adds the number one to it,
placing the result back in the accumulator. What was in the accumulator?
Whatever was in it when this subroutine was called. The next byte (at
address 6035) does it again. The byte at 6036 is an 05. That's a DEC B, or
subtract-one-from-register-B instruction. Ho Hum.

Aha! The next byte fetched is a C9, or RETurn instruction (which takes

us to step 7). The Z-80 can do a RETurn without any additional data, because
it knows that the return address is on the stack (which is where it had
better be). It fetches two bytes from the stack (reversed...), readjusts the

stack and leaps back to address 5006. If this all seems vaguely similar to
the GOSUB/RETURN commands in BASIC, that's because it is.

For discussion on what the stack is and how it is used, as well as a
special type of CALL that is executed with an electrical pulse rather than a
memory instruction, tune in next month, now, enjo%:iiur programs!

,

ety
alph TMcElroy - ‘Publisher

12 Monthly cassette issues S36.00 *
(over 60O programs)

Single issues S 350"

Best of CLOAD' SI0OO "

(9 programs w/ listings)

* CA residents please add 6% to non-subscription orders
Please write for overseas rates

Master Charge / Visa Welcome Aiso Cash & Gold

«: Copyright CLOAD MAGAZINE 1980

	023.pdf
	024.pdf
	025.pdf
	026.pdf

